什麼是前瞻技術?
前瞻技術指的是那些超越現有科技水準,具有高度創新性,並有潛力在未來引發重大變革的技術。
這些技術不僅能解決現存的問題,更能開創全新的應用領域,為社會帶來深遠的影響。

閱讀全文 »

標籤雜訊學習(Label-Noise Learning, LNL) 旨在處理含有雜訊標籤的訓練數據,進而提升模型的泛化能力。為了實現更具實用性的 LNL 演算法,研究者已提出多種標籤雜訊類型,從類別條件雜訊到實例依賴雜訊皆有探討。在本研究中提出了一種全新的標籤雜訊類型,稱為 BadLabel。這種雜訊類型可以顯著降低現有 LNL 演算法的性能。

閱讀全文 »

安全的機器學習系統(Secure Machine Learning Systems)旨在確保機器學習模型在實際應用中能夠抵禦各種安全威脅,並且保持其性能和準確性不受攻擊或干擾。隨著機器學習廣泛應用於金融、醫療、交通、網路安全等關鍵領域,保護這些系統不受惡意攻擊或資料泄露的風險變得尤為重要。

閱讀全文 »

Label noise learning(標籤雜訊學習)是機器學習中的一個研究領域,專注於應對資料集中錯誤或不準確的標籤問題。
標籤雜訊通常會導致模型的效能下降,特別是當訓練資料中的錯誤標籤比例較高時,模型可能會學習到錯誤的模式,從而影響其泛化能力。

閱讀全文 »

模型的泛化能力(Generalization Ability)是指模型在訓練後,能在未見過的資料上表現良好的能力。換句話說,模型不僅能夠在訓練資料上取得好的效果,還能在測試資料或真實世界中的新資料上做出準確的預測。這是機器學習中評估模型效能的重要指標。

閱讀全文 »

STEM 是指 Science(科學)、Technology(技術)、Engineering(工程) 和 Mathematics(數學) 的統稱,這四個學科領域是現代教育、技術創新和經濟發展的基礎。STEM 教育和職業的重點是通過學科整合,培養學生和專業人士的批判性思維、問題解決能力和創新精神,以應對現實世界的挑戰。

閱讀全文 »
0%