Res2Net 解析

研究背景

近期在改良編碼器網路,偶然間找到這一篇主幹網路,便將模型程式碼拆開來解析分析內部架構,這篇的引用次數偏高。以往實作上,論文與實際程式碼實現都會有段差距,基於論文提出的想法來改量比較實際,實作上有些東西刪減也是解析程式碼時發現的,並非都是原先的模型架構,此程式碼主要來自論文提供的原始碼網站。

模型架構解析

  • res2net50_26w_4s()
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    Res2Net(
    (conv1): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Sequential(
    (0): Bottle2neck(
    (conv1): Conv2d(64, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (pool): AvgPool2d(kernel_size=3, stride=1, padding=1)
    (convs): ModuleList(
    (0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
    (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    )
    (1): Bottle2neck(
    (conv1): Conv2d(256, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (2): Bottle2neck(
    (conv1): Conv2d(256, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    )
    (layer2): Sequential(
    (0): Bottle2neck(
    (conv1): Conv2d(256, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
    (convs): ModuleList(
    (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
    (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    )
    (1): Bottle2neck(
    (conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (2): Bottle2neck(
    (conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (3): Bottle2neck(
    (conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    )
    (layer3): Sequential(
    (0): Bottle2neck(
    (conv1): Conv2d(512, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
    (convs): ModuleList(
    (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
    (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    )
    (1): Bottle2neck(
    (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (2): Bottle2neck(
    (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (3): Bottle2neck(
    (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (4): Bottle2neck(
    (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (5): Bottle2neck(
    (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    )
    (layer4): Sequential(
    (0): Bottle2neck(
    (conv1): Conv2d(1024, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
    (convs): ModuleList(
    (0): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (1): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (2): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
    (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    )
    (1): Bottle2neck(
    (conv1): Conv2d(2048, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    (2): Bottle2neck(
    (conv1): Conv2d(2048, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (convs): ModuleList(
    (0): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (2): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    )
    (bns): ModuleList(
    (0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    )
    )
    (avgpool): AdaptiveAvgPool2d(output_size=1)
    (fc): Linear(in_features=2048, out_features=1000, bias=True)
    )

模型參數分析

  • res2net50_26w_4s()
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    ----------------------------------------------------------------
    Layer (type) Output Shape Param #
    ================================================================
    Conv2d-1 [-1, 64, 120, 160] 3,136
    BatchNorm2d-2 [-1, 64, 120, 160] 128
    ReLU-3 [-1, 64, 120, 160] 0
    MaxPool2d-4 [-1, 64, 60, 80] 0

    (layer1)-Bottle2neck-0
    width = 64 * (26/64) = 26
    conv1 = width*scale = 26 * 4 = 104
    bn1 = width*scale = 26 * 4 = 104
    conv3 = planes * block.expansion = 64 * 4 = 256
    downsample = planes * block.expansion = 64 * 4 = 256
    Conv2d-5 [-1, 104, 60, 80] 6,656 conv1
    BatchNorm2d-6 [-1, 104, 60, 80] 208 bn1
    ReLU-7 [-1, 104, 60, 80] 0 relu

    Conv2d-8 [-1, 26, 60, 80] 6,084 convs - 0
    BatchNorm2d-9 [-1, 26, 60, 80] 52 bns - 0
    ReLU-10 [-1, 26, 60, 80] 0 relu

    Conv2d-11 [-1, 26, 60, 80] 6,084 convs - 1
    BatchNorm2d-12 [-1, 26, 60, 80] 52 bns - 1
    ReLU-13 [-1, 26, 60, 80] 0 relu

    Conv2d-14 [-1, 26, 60, 80] 6,084 convs - 2
    BatchNorm2d-15 [-1, 26, 60, 80] 52 bns - 2
    ReLU-16 [-1, 26, 60, 80] 0 relu

    AvgPool2d-17 [-1, 26, 60, 80] 0 pool

    Conv2d-18 [-1, 256, 60, 80] 26,624 conv3
    BatchNorm2d-19 [-1, 256, 60, 80] 512 bn3

    Conv2d-20 [-1, 256, 60, 80] 16,384 downsample - 0
    BatchNorm2d-21 [-1, 256, 60, 80] 512 downsample - 1

    ReLU-22 [-1, 256, 60, 80] 0

    (layer1)-Bottle2neck-1
    width = 64 * (26/64) = 26
    conv1 = width*scale = 26 * 4 = 104
    bn1 = width*scale = 26 * 4 = 104
    conv3 = planes * block.expansion = 64 * 4 = 256
    downsample = planes * block.expansion = 64 * 4 = 256
    Bottle2neck-23 [-1, 256, 60, 80] 0
    Conv2d-24 [-1, 104, 60, 80] 26,624 conv1
    BatchNorm2d-25 [-1, 104, 60, 80] 208 bn1
    ReLU-26 [-1, 104, 60, 80] 0 relu

    Conv2d-27 [-1, 26, 60, 80] 6,084 convs - 0
    BatchNorm2d-28 [-1, 26, 60, 80] 52 bns - 0
    ReLU-29 [-1, 26, 60, 80] 0 relu

    Conv2d-30 [-1, 26, 60, 80] 6,084 convs - 1
    BatchNorm2d-31 [-1, 26, 60, 80] 52 bns - 1
    ReLU-32 [-1, 26, 60, 80] 0 relu

    Conv2d-33 [-1, 26, 60, 80] 6,084 conv - 2
    BatchNorm2d-34 [-1, 26, 60, 80] 52 bns - 2
    ReLU-35 [-1, 26, 60, 80] 0 relu

    Conv2d-36 [-1, 256, 60, 80] 26,624 conv3
    BatchNorm2d-37 [-1, 256, 60, 80] 512 bn3
    ReLU-38 [-1, 256, 60, 80] 0 relu

    (layer1)-Bottle2neck-2
    width = 64 * (26/64) = 26
    conv1 = width*scale = 26 * 4 = 104
    bn1 = width*scale = 26 * 4 = 104
    conv3 = planes * block.expansion = 64 * 4 = 256
    downsample = planes * block.expansion = 64 * 4 = 256
    Bottle2neck-39 [-1, 256, 60, 80] 0
    Conv2d-40 [-1, 104, 60, 80] 26,624 conv1
    BatchNorm2d-41 [-1, 104, 60, 80] 208 bn1
    ReLU-42 [-1, 104, 60, 80] 0 relu

    Conv2d-43 [-1, 26, 60, 80] 6,084 convs - 0
    BatchNorm2d-44 [-1, 26, 60, 80] 52 bns - 0
    ReLU-45 [-1, 26, 60, 80] 0 relu

    Conv2d-46 [-1, 26, 60, 80] 6,084 convs - 1
    BatchNorm2d-47 [-1, 26, 60, 80] 52 bns - 1
    ReLU-48 [-1, 26, 60, 80] 0 relu

    Conv2d-49 [-1, 26, 60, 80] 6,084 convs - 2
    BatchNorm2d-50 [-1, 26, 60, 80] 52 bns - 2
    ReLU-51 [-1, 26, 60, 80] 0 relu

    Conv2d-52 [-1, 256, 60, 80] 26,624 conv3
    BatchNorm2d-53 [-1, 256, 60, 80] 512 bn3
    ReLU-54 [-1, 256, 60, 80] 0 relu

    (layer2)-Bottle2neck-0
    width = 64 * (26/64) = 26
    conv1 = width*scale = 26 * 4 = 104
    bn1 = width*scale = 26 * 4 = 104
    conv3 = planes * block.expansion = 64 * 4 = 256
    downsample = planes * block.expansion = 64 * 4 = 256
    Bottle2neck-55 [-1, 256, 60, 80] 0
    Conv2d-56 [-1, 208, 60, 80] 53,248 conv1
    BatchNorm2d-57 [-1, 208, 60, 80] 416 bn1
    ReLU-58 [-1, 208, 60, 80] 0 relu

    Conv2d-59 [-1, 52, 30, 40] 24,336 convs-0
    BatchNorm2d-60 [-1, 52, 30, 40] 104 bns -0
    ReLU-61 [-1, 52, 30, 40] 0 relu

    Conv2d-62 [-1, 52, 30, 40] 24,336 convs-1
    BatchNorm2d-63 [-1, 52, 30, 40] 104 bns -1
    ReLU-64 [-1, 52, 30, 40] 0 relu

    Conv2d-65 [-1, 52, 30, 40] 24,336 convs-2
    BatchNorm2d-66 [-1, 52, 30, 40] 104 bns -2
    ReLU-67 [-1, 52, 30, 40] 0 relu

    AvgPool2d-68 [-1, 52, 30, 40] 0 pool
    Conv2d-69 [-1, 512, 30, 40] 106,496 conv3
    BatchNorm2d-70 [-1, 512, 30, 40] 1,024 bn3

    Conv2d-71 [-1, 512, 30, 40] 131,072 downsample - 0
    BatchNorm2d-72 [-1, 512, 30, 40] 1,024 downsample - 1
    ReLU-73 [-1, 512, 30, 40] 0 relu


    (layer2)-Bottle2neck-1
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 128 * (26/64)= 52
    conv1 = width*scale = 52 * 4 = 208
    bn1 = width*scale = 52 * 4 = 208
    conv3 = planes * block.expansion = 128 * 4 = 512
    downsample = planes * block.expansion = 128 * 4 = 512
    Bottle2neck-74 [-1, 512, 30, 40] 0
    Conv2d-75 [-1, 208, 30, 40] 106,496 conv1
    BatchNorm2d-76 [-1, 208, 30, 40] 416 bn1
    ReLU-77 [-1, 208, 30, 40] 0 relu

    Conv2d-78 [-1, 52, 30, 40] 24,336 convs - 0
    BatchNorm2d-79 [-1, 52, 30, 40] 104 bns - 0
    ReLU-80 [-1, 52, 30, 40] 0 relu

    Conv2d-81 [-1, 52, 30, 40] 24,336 convs - 1
    BatchNorm2d-82 [-1, 52, 30, 40] 104 bns - 1
    ReLU-83 [-1, 52, 30, 40] 0 relu

    Conv2d-84 [-1, 52, 30, 40] 24,336 convs - 2
    BatchNorm2d-85 [-1, 52, 30, 40] 104 bns - 2
    ReLU-86 [-1, 52, 30, 40] 0 relu

    Conv2d-87 [-1, 512, 30, 40] 106,496 conv3
    BatchNorm2d-88 [-1, 512, 30, 40] 1,024 bn3
    ReLU-89 [-1, 512, 30, 40] 0 relu

    (layer2)-Bottle2neck-2
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 128 * (26/64)= 52
    conv1 = width*scale = 52 * 4 = 208
    bn1 = width*scale = 52 * 4 = 208
    conv3 = planes * block.expansion = 128 * 4 = 512
    downsample = planes * block.expansion = 128 * 4 = 512
    Bottle2neck-90 [-1, 512, 30, 40] 0
    Conv2d-91 [-1, 208, 30, 40] 106,496 conv1
    BatchNorm2d-92 [-1, 208, 30, 40] 416 bn1
    ReLU-93 [-1, 208, 30, 40] 0 relu

    Conv2d-94 [-1, 52, 30, 40] 24,336 convs-0
    BatchNorm2d-95 [-1, 52, 30, 40] 104 bn0
    ReLU-96 [-1, 52, 30, 40] 0 relu

    Conv2d-97 [-1, 52, 30, 40] 24,336 convs-1
    BatchNorm2d-98 [-1, 52, 30, 40] 104 bn1
    ReLU-99 [-1, 52, 30, 40] 0 relu

    Conv2d-100 [-1, 52, 30, 40] 24,336 convs-2
    BatchNorm2d-101 [-1, 52, 30, 40] 104 bn2
    ReLU-102 [-1, 52, 30, 40] 0 relu

    Conv2d-103 [-1, 512, 30, 40] 106,496 conv3
    BatchNorm2d-104 [-1, 512, 30, 40] 1,024 bn3
    ReLU-105 [-1, 512, 30, 40] 0 relu

    (layer2)-Bottle2neck-3
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 128 * (26/64)= 52
    conv1 = width*scale = 52 * 4 = 208
    bn1 = width*scale = 52 * 4 = 208
    conv3 = planes * block.expansion = 128 * 4 = 512
    downsample = planes * block.expansion = 128 * 4 = 512
    Bottle2neck-106 [-1, 512, 30, 40] 0
    Conv2d-107 [-1, 208, 30, 40] 106,496 conv1
    BatchNorm2d-108 [-1, 208, 30, 40] 416 bn1
    ReLU-109 [-1, 208, 30, 40] 0 relu

    Conv2d-110 [-1, 52, 30, 40] 24,336 convs-0
    BatchNorm2d-111 [-1, 52, 30, 40] 104 bn0
    ReLU-112 [-1, 52, 30, 40] 0 relu

    Conv2d-113 [-1, 52, 30, 40] 24,336 convs-1
    BatchNorm2d-114 [-1, 52, 30, 40] 104 bn1
    ReLU-115 [-1, 52, 30, 40] 0 relu

    Conv2d-116 [-1, 52, 30, 40] 24,336 convs-2
    BatchNorm2d-117 [-1, 52, 30, 40] 104 bn2
    ReLU-118 [-1, 52, 30, 40] 0 relu

    Conv2d-119 [-1, 512, 30, 40] 106,496 conv3
    BatchNorm2d-120 [-1, 512, 30, 40] 1,024 bn3
    ReLU-121 [-1, 512, 30, 40] 0 relu

    (layer3)-Bottle2neck-0
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 256 * (26/64)= 104
    conv1 = width*scale = 104 * 4 = 416
    bn1 = width*scale = 104 * 4 = 416
    conv3 = planes * block.expansion = 256 * 4 = 1024
    downsample = planes * block.expansion = 256 * 4 = 1024
    Bottle2neck-122 [-1, 512, 30, 40] 0
    Conv2d-123 [-1, 416, 30, 40] 212,992 conv1
    BatchNorm2d-124 [-1, 416, 30, 40] 832 bn1
    ReLU-125 [-1, 416, 30, 40] 0 relu

    Conv2d-126 [-1, 104, 15, 20] 97,344 convs-0
    BatchNorm2d-127 [-1, 104, 15, 20] 208 bn0
    ReLU-128 [-1, 104, 15, 20] 0 relu

    Conv2d-129 [-1, 104, 15, 20] 97,344 convs-1
    BatchNorm2d-130 [-1, 104, 15, 20] 208 bn1
    ReLU-131 [-1, 104, 15, 20] 0 relu

    Conv2d-132 [-1, 104, 15, 20] 97,344 convs-2
    BatchNorm2d-133 [-1, 104, 15, 20] 208 bn2
    ReLU-134 [-1, 104, 15, 20] 0 relu

    AvgPool2d-135 [-1, 104, 15, 20] 0
    Conv2d-136 [-1, 1024, 15, 20] 425,984 conv3
    BatchNorm2d-137 [-1, 1024, 15, 20] 2,048 bn3

    Conv2d-138 [-1, 1024, 15, 20] 524,288 downsample-0
    BatchNorm2d-139 [-1, 1024, 15, 20] 2,048 downsample-1
    ReLU-140 [-1, 1024, 15, 20] 0 relu

    (layer3)-Bottle2neck-1
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 256 * (26/64)= 104
    conv1 = width*scale = 104 * 4 = 416
    bn1 = width*scale = 104 * 4 = 416
    conv3 = planes * block.expansion = 256 * 4 = 1024
    downsample = planes * block.expansion = 256 * 4 = 1024
    Bottle2neck-141 [-1, 1024, 15, 20] 0
    Conv2d-142 [-1, 416, 15, 20] 425,984 conv1
    BatchNorm2d-143 [-1, 416, 15, 20] 832 bn1
    ReLU-144 [-1, 416, 15, 20] 0 relu

    Conv2d-145 [-1, 104, 15, 20] 97,344 convs-0
    BatchNorm2d-146 [-1, 104, 15, 20] 208 bns0
    ReLU-147 [-1, 104, 15, 20] 0 relu

    Conv2d-148 [-1, 104, 15, 20] 97,344 convs-1
    BatchNorm2d-149 [-1, 104, 15, 20] 208 bns1
    ReLU-150 [-1, 104, 15, 20] 0 relu

    Conv2d-151 [-1, 104, 15, 20] 97,344 convs-2
    BatchNorm2d-152 [-1, 104, 15, 20] 208 bns2
    ReLU-153 [-1, 104, 15, 20] 0 relu

    Conv2d-154 [-1, 1024, 15, 20] 425,984 conv3
    BatchNorm2d-155 [-1, 1024, 15, 20] 2,048 bn3
    ReLU-156 [-1, 1024, 15, 20] 0 relu

    (layer3)-Bottle2neck-2
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 256 * (26/64)= 104
    conv1 = width*scale = 104 * 4 = 416
    bn1 = width*scale = 104 * 4 = 416
    conv3 = planes * block.expansion = 256 * 4 = 1024
    downsample = planes * block.expansion = 256 * 4 = 1024
    Bottle2neck-157 [-1, 1024, 15, 20] 0
    Conv2d-158 [-1, 416, 15, 20] 425,984 conv1
    BatchNorm2d-159 [-1, 416, 15, 20] 832 bn1
    ReLU-160 [-1, 416, 15, 20] 0 relu

    Conv2d-161 [-1, 104, 15, 20] 97,344 convs0
    BatchNorm2d-162 [-1, 104, 15, 20] 208 bns0
    ReLU-163 [-1, 104, 15, 20] 0 relu

    Conv2d-164 [-1, 104, 15, 20] 97,344 convs1
    BatchNorm2d-165 [-1, 104, 15, 20] 208 bns1
    ReLU-166 [-1, 104, 15, 20] 0 relu

    Conv2d-167 [-1, 104, 15, 20] 97,344 convs2
    BatchNorm2d-168 [-1, 104, 15, 20] 208 bns2
    ReLU-169 [-1, 104, 15, 20] 0 relu

    Conv2d-170 [-1, 1024, 15, 20] 425,984 conv3
    BatchNorm2d-171 [-1, 1024, 15, 20] 2,048 bns3
    ReLU-172 [-1, 1024, 15, 20] 0 relu

    (layer3)-Bottle2neck-3
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 256 * (26/64)= 104
    conv1 = width*scale = 104 * 4 = 416
    bn1 = width*scale = 104 * 4 = 416
    conv3 = planes * block.expansion = 256 * 4 = 1024
    downsample = planes * block.expansion = 256 * 4 = 1024
    Bottle2neck-173 [-1, 1024, 15, 20] 0
    Conv2d-174 [-1, 416, 15, 20] 425,984 conv1
    BatchNorm2d-175 [-1, 416, 15, 20] 832 bn1
    ReLU-176 [-1, 416, 15, 20] 0 relu

    Conv2d-177 [-1, 104, 15, 20] 97,344 convs0
    BatchNorm2d-178 [-1, 104, 15, 20] 208 bns0
    ReLU-179 [-1, 104, 15, 20] 0 relu

    Conv2d-180 [-1, 104, 15, 20] 97,344 convs1
    BatchNorm2d-181 [-1, 104, 15, 20] 208 bns1
    ReLU-182 [-1, 104, 15, 20] 0 relu

    Conv2d-183 [-1, 104, 15, 20] 97,344 convs2
    BatchNorm2d-184 [-1, 104, 15, 20] 208 bns2
    ReLU-185 [-1, 104, 15, 20] 0 relu

    Conv2d-186 [-1, 1024, 15, 20] 425,984 conv3
    BatchNorm2d-187 [-1, 1024, 15, 20] 2,048 bns3
    ReLU-188 [-1, 1024, 15, 20] 0 relu

    (layer3)-Bottle2neck-4
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 256 * (26/64)= 104
    conv1 = width*scale = 104 * 4 = 416
    bn1 = width*scale = 104 * 4 = 416
    conv3 = planes * block.expansion = 256 * 4 = 1024
    downsample = planes * block.expansion = 256 * 4 = 1024
    Bottle2neck-189 [-1, 1024, 15, 20] 0
    Conv2d-190 [-1, 416, 15, 20] 425,984 conv1
    BatchNorm2d-191 [-1, 416, 15, 20] 832 bns1
    ReLU-192 [-1, 416, 15, 20] 0 relu

    Conv2d-193 [-1, 104, 15, 20] 97,344 convs0
    BatchNorm2d-194 [-1, 104, 15, 20] 208 bns0
    ReLU-195 [-1, 104, 15, 20] 0 relu

    Conv2d-196 [-1, 104, 15, 20] 97,344 convs1
    BatchNorm2d-197 [-1, 104, 15, 20] 208 bns1
    ReLU-198 [-1, 104, 15, 20] 0 relu

    Conv2d-199 [-1, 104, 15, 20] 97,344 convs2
    BatchNorm2d-200 [-1, 104, 15, 20] 208 bns2
    ReLU-201 [-1, 104, 15, 20] 0 relu

    Conv2d-202 [-1, 1024, 15, 20] 425,984 conv3
    BatchNorm2d-203 [-1, 1024, 15, 20] 2,048 bns3
    ReLU-204 [-1, 1024, 15, 20] 0 relu

    (layer3)-Bottle2neck-5
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 256 * (26/64)= 104
    conv1 = width*scale = 104 * 4 = 416
    bn1 = width*scale = 104 * 4 = 416
    conv3 = planes * block.expansion = 256 * 4 = 1024
    downsample = planes * block.expansion = 256 * 4 = 1024
    Bottle2neck-205 [-1, 1024, 15, 20] 0
    Conv2d-206 [-1, 416, 15, 20] 425,984 conv1
    BatchNorm2d-207 [-1, 416, 15, 20] 832 bns1
    ReLU-208 [-1, 416, 15, 20] 0 relu

    Conv2d-209 [-1, 104, 15, 20] 97,344 convs0
    BatchNorm2d-210 [-1, 104, 15, 20] 208 bns0
    ReLU-211 [-1, 104, 15, 20] 0 relu

    Conv2d-212 [-1, 104, 15, 20] 97,344 convs1
    BatchNorm2d-213 [-1, 104, 15, 20] 208 bns1
    ReLU-214 [-1, 104, 15, 20] 0 relu

    Conv2d-215 [-1, 104, 15, 20] 97,344 convs2
    BatchNorm2d-216 [-1, 104, 15, 20] 208 bns2
    ReLU-217 [-1, 104, 15, 20] 0 relu

    Conv2d-218 [-1, 1024, 15, 20] 425,984 conv3
    BatchNorm2d-219 [-1, 1024, 15, 20] 2,048 bns3
    ReLU-220 [-1, 1024, 15, 20] 0 relu

    (layer4)-Bottle2neck-0
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 512 * (26/64)= 208
    conv1 = width*scale = 208 * 4 = 832
    bn1 = width*scale = 208 * 4 = 832
    conv3 = planes * block.expansion = 512 * 4 = 2048
    downsample = planes * block.expansion = 512 * 4 = 2048
    Bottle2neck-221 [-1, 1024, 15, 20] 0
    Conv2d-222 [-1, 832, 15, 20] 851,968
    BatchNorm2d-223 [-1, 832, 15, 20] 1,664
    ReLU-224 [-1, 832, 15, 20] 0

    Conv2d-225 [-1, 208, 8, 10] 389,376
    BatchNorm2d-226 [-1, 208, 8, 10] 416
    ReLU-227 [-1, 208, 8, 10] 0

    Conv2d-228 [-1, 208, 8, 10] 389,376
    BatchNorm2d-229 [-1, 208, 8, 10] 416
    ReLU-230 [-1, 208, 8, 10] 0

    Conv2d-231 [-1, 208, 8, 10] 389,376
    BatchNorm2d-232 [-1, 208, 8, 10] 416
    ReLU-233 [-1, 208, 8, 10] 0

    AvgPool2d-234 [-1, 208, 8, 10] 0
    Conv2d-235 [-1, 2048, 8, 10] 1,703,936
    BatchNorm2d-236 [-1, 2048, 8, 10] 4,096
    Conv2d-237 [-1, 2048, 8, 10] 2,097,152
    BatchNorm2d-238 [-1, 2048, 8, 10] 4,096
    ReLU-239 [-1, 2048, 8, 10] 0

    (layer4)-Bottle2neck-1
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 512 * (26/64)= 208
    conv1 = width*scale = 208 * 4 = 832
    bn1 = width*scale = 208 * 4 = 832
    conv3 = planes * block.expansion = 512 * 4 = 2048
    downsample = planes * block.expansion = 512 * 4 = 2048
    Bottle2neck-240 [-1, 2048, 8, 10] 0
    Conv2d-241 [-1, 832, 8, 10] 1,703,936
    BatchNorm2d-242 [-1, 832, 8, 10] 1,664
    ReLU-243 [-1, 832, 8, 10] 0

    Conv2d-244 [-1, 208, 8, 10] 389,376
    BatchNorm2d-245 [-1, 208, 8, 10] 416
    ReLU-246 [-1, 208, 8, 10] 0

    Conv2d-247 [-1, 208, 8, 10] 389,376
    BatchNorm2d-248 [-1, 208, 8, 10] 416
    ReLU-249 [-1, 208, 8, 10] 0

    Conv2d-250 [-1, 208, 8, 10] 389,376
    BatchNorm2d-251 [-1, 208, 8, 10] 416
    ReLU-252 [-1, 208, 8, 10] 0

    Conv2d-253 [-1, 2048, 8, 10] 1,703,936
    BatchNorm2d-254 [-1, 2048, 8, 10] 4,096
    ReLU-255 [-1, 2048, 8, 10] 0

    (layer4)-Bottle2neck-2
    width = int(math.floor(planes * (baseWidth/64.0)))
    width = 512 * (26/64)= 208
    conv1 = width*scale = 208 * 4 = 832
    bn1 = width*scale = 208 * 4 = 832
    conv3 = planes * block.expansion = 512 * 4 = 2048
    downsample = planes * block.expansion = 512 * 4 = 2048
    Bottle2neck-256 [-1, 2048, 8, 10] 0
    Conv2d-257 [-1, 832, 8, 10] 1,703,936
    BatchNorm2d-258 [-1, 832, 8, 10] 1,664
    ReLU-259 [-1, 832, 8, 10] 0

    Conv2d-260 [-1, 208, 8, 10] 389,376
    BatchNorm2d-261 [-1, 208, 8, 10] 416
    ReLU-262 [-1, 208, 8, 10] 0

    Conv2d-263 [-1, 208, 8, 10] 389,376
    BatchNorm2d-264 [-1, 208, 8, 10] 416
    ReLU-265 [-1, 208, 8, 10] 0

    Conv2d-266 [-1, 208, 8, 10] 389,376
    BatchNorm2d-267 [-1, 208, 8, 10] 416
    ReLU-268 [-1, 208, 8, 10] 0

    Conv2d-269 [-1, 2048, 8, 10] 1,703,936
    BatchNorm2d-270 [-1, 2048, 8, 10] 4,096
    ReLU-271 [-1, 2048, 8, 10] 0
    Bottle2neck-272 [-1, 2048, 8, 10] 0

    AdaptiveAvgPool2d-273 [-1, 2048, 1, 1] 0
    Linear-274 [-1, 1000] 2,049,000
    ================================================================
    Total params: 25,692,848
    Trainable params: 25,692,848
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.29
    Forward/backward pass size (MB): 494.21
    Params size (MB): 98.01
    Estimated Total Size (MB): 592.51
    ----------------------------------------------------------------

論文架構比對

簡化分析

Res2Net

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
- (conv1)
- (bn1)
- (relu)
- (maxpool)
- (layer1) - 3
- (0): Bottle2neck
- (1): Bottle2neck
- (2): Bottle2neck
- (layer2) - 4
- (0): Bottle2neck
- (1): Bottle2neck
- (2): Bottle2neck
- (3): Bottle2neck
- (layer3) - 6
- (0): Bottle2neck
- (1): Bottle2neck
- (2): Bottle2neck
- (3): Bottle2neck
- (4): Bottle2neck
- (5): Bottle2neck
- (layer4) - 3
- (0): Bottle2neck
- (1): Bottle2neck
- (2): Bottle2neck
- (avgpool)
- (fc)

ResNet

resnet

PyTorch 筆記

nn.ModuleList()

https://pytorch.org/docs/stable/generated/torch.nn.ModuleList.html

torch.nn.init

https://pytorch.org/docs/stable/nn.init.html

torch.nn.init.kaiming_normal_()

torch.nn.init.constant_()

參考資料

  1. SENet
    [Hu19] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

  2. Res2Net
    [Gao19] Gao, S. H., Cheng, M. M., Zhao, K., Zhang, X. Y., Yang, M. H., & Torr, P. (2019). Res2net: A new multi-scale backbone architecture. IEEE transactions on pattern analysis and machine intelligence, 43(2), 652-662.
    https://mmcheng.net/res2net/

  3. ResNet
    [He16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

  4. Github
    https://github.com/Res2Net/Res2Net-PretrainedModels/tree/3b9b078ae4c261d227449fe18504315c0740795a

  5. ModuleList
    https://clay-atlas.com/blog/2020/07/02/pytorch-cn-note-how-to-use-module-list/