1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 240, 320] 640 BatchNorm2d-2 [-1, 64, 240, 320] 128 ReLU-3 [-1, 64, 240, 320] 0 Conv2d-4 [-1, 64, 240, 320] 36,928 BatchNorm2d-5 [-1, 64, 240, 320] 128 ReLU-6 [-1, 64, 240, 320] 0 double_conv-7 [-1, 64, 240, 320] 0 inconv-8 [-1, 64, 240, 320] 0 MaxPool2d-9 [-1, 64, 120, 160] 0 Conv2d-10 [-1, 64, 120, 160] 36,928 BatchNorm2d-11 [-1, 64, 120, 160] 128 ReLU-12 [-1, 64, 120, 160] 0 Conv2d-13 [-1, 64, 120, 160] 36,928 BatchNorm2d-14 [-1, 64, 120, 160] 128 ReLU-15 [-1, 64, 120, 160] 0 double_conv-16 [-1, 64, 120, 160] 0 down-17 [-1, 64, 120, 160] 0 MaxPool2d-18 [-1, 64, 60, 80] 0 Conv2d-19 [-1, 128, 60, 80] 73,856 BatchNorm2d-20 [-1, 128, 60, 80] 256 ReLU-21 [-1, 128, 60, 80] 0 Conv2d-22 [-1, 128, 60, 80] 147,584 BatchNorm2d-23 [-1, 128, 60, 80] 256 ReLU-24 [-1, 128, 60, 80] 0 double_conv-25 [-1, 128, 60, 80] 0 down-26 [-1, 128, 60, 80] 0 MaxPool2d-27 [-1, 128, 30, 40] 0 Conv2d-28 [-1, 128, 30, 40] 147,584 BatchNorm2d-29 [-1, 128, 30, 40] 256 ReLU-30 [-1, 128, 30, 40] 0 Conv2d-31 [-1, 128, 30, 40] 147,584 BatchNorm2d-32 [-1, 128, 30, 40] 256 ReLU-33 [-1, 128, 30, 40] 0 double_conv-34 [-1, 128, 30, 40] 0 down-35 [-1, 128, 30, 40] 0 Conv2d-36 [-1, 256, 30, 40] 295,168 BatchNorm2d-37 [-1, 256, 30, 40] 512 ReLU-38 [-1, 256, 30, 40] 0 Conv2d-39 [-1, 65, 30, 40] 16,705 BatchNorm2d-40 [-1, 65, 30, 40] 130 Conv2d-41 [-1, 256, 30, 40] 295,168 BatchNorm2d-42 [-1, 256, 30, 40] 512 ReLU-43 [-1, 256, 30, 40] 0 Conv2d-44 [-1, 256, 30, 40] 65,792 BatchNorm2d-45 [-1, 256, 30, 40] 512 Conv2d-46 [-1, 256, 30, 40] 65,792 Conv2d-47 [-1, 256, 30, 40] 65,792 Conv2d-48 [-1, 256, 30, 40] 65,792 LinearAttentionX-49 [-1, 256, 30, 40] 0
|